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Abstract. The magnetoslatic energis and foxes derived from axisymmeuic models 
appropriate for magnetic force microscopy (MFM) of superconductors are examined. For models 
with a semi-infinite sample, closed form representations are obtained for arbitmy pmbe height. 
Specific boundary value problems considered are appropriate for a vortex penetrating a type- 
I1 superconductor, or for a magnetic monopole or dipole above or within a superconductor. 
Physically important limits such as complete flux expulsion become masparent with the new 
results. It is shown that previously employed approximations and numerical quadrature are 
unnecessary. 

Introduction 

Mathematical models of the interaction of stray magnetic fields with a magnetic probe tip 
aie fundamental to the theory of magnetic force microscopy (a). Typical idealized tips 
are magnetic point charges~(monopoles), magnetic point dipoles, and extended dipoles in 
the form of long needles, truncated cones and prisms, cylinders, and cylinders topped with a 
hemisphere or cone [1-4]. Recently, the magnetic force imaging of type-I1 superconductors, 
especially the high-T, materials, has received attention. The MFM interaction in both the 
Meissner and vortex states has been considered. MFM provides new opportunities for 
studying the superconductor response in changes to parameters such as the temperature, 
magnetic field, and applied current density. Furthermore, future MpM studies may' shed 
important information on the microscopic mechanisms of vortex pinning. This knowledge, 
in turn, will be very useful in understanding vortex dynamics and critical currents. 

In superconductivity applications, MFM models typically involve a semi-infinite sample 
with either Abrikosov vortices or with magnetic point sources [ 1,4]. The axisymmetry of the 
problem can be exploited. I have found that in such models the magnetostatic interaction 
energy and associated force can be put into closed form for arbitraty probe height. For 
models with a vertical vortex, all tip heights z =- 0 directly above the vortex allow closed 
form results. 

Formerly these energies and forces have been left in the forn,of one-dimensional 
integrals and evaluated numerically. I show that this procedure can be avoided. In this paper 
I present several classes of integrals which occur in MFM applications and give examples of 
their use. These techniques should also apply to magnetic levitation modelling [5-6] and 
MFM studies of recording media 131, but I concentrate on MFM studies of superconductors. 
I expect the results to be immediately useful altematives to numerical quadrature. 
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Due to the axisymmetry, the magnetostatic energies and forces are evaluated in terms 
of various solutions of the Bessel equation. The homogeneous solutions N, (or Y,) and K, 
appear, as do the inhomogeneous solutions H, and E, (the Struve and Weber functions). 
These results are currently all the more convenient because symbolic manipulation packages 
(SMB) such as Mathemica and Macsyma [SI either have these functions built-in or are 
readily programmed. These SMPs usually have capabilities for evaluating recursion relations, 
taking derivatives, and plotting. 

I begin with some specific integrals of interest and then show their applicability in 
several examples. There is little doubt that the MFM and magnetic and electric levitation 
literature [3-71 contains many more uses. 

Reference integrals 

I wish to focus on integrands containing products of algebraic functions and a decreasing 
exponential. The definite integral [9] 

l w ( x 2  + a2)1/2xne-px cjx = - a(-Un:-[H1(ap) - N l ( a ~ ) l  R e p  0 (1) 

with integer n is very suitable. Here HI and NI are the first-order Struve and Neumann 
functions. The extension to n # 0 is important in the following. When the square mot 
instead appears in the denominator I have [9] 

n d" 1 
2 Q P 

(2) 

A simple connection between (1) and (2) is that a/aa of the integral of (1) is a times the 
integral of (2). Similarly, the closely related definite integral with power n 

ir d" 
( x  + a2)--l/Zxne--lrxdx = -(-l)"-[H OW) - No(~P)I Re P > 0. I -  2 dPn 

R e p > O  (3) 
d" n 1 

W" 1 2  Y 
dx = (-1Y- --[E&(& - NI(P)] - - 

is highly applicable. Equation (3) also follows from (1) and the last term of (3) is simply 
r(n + 2)/p"+'. The utility of (1H3) is underscored by the recursion relations satisfied by 
the Struve and Neumann functions. In particular, HL(z) = 2/n - H1 (z),  NA(z) = -NI ( z ) ,  
and 

d l  2 1  
--H1(z) = ---Er&) 
dz z 3 n  z 
d l  1 

--Ni(z) = --Nz(z) 
dz z Z 

show that the derivatives are easy to compute. By way of the recursion relations, the higher- 
order derivatives of the Smve and Neumann functions in (1)-(3) can be written in terms 
of these functions themselves. In this way, as ilIustrated below, I am able to avoid using a 
Meijer function G:: [9], where 

That a Meijer function G:: is related to a Lommel function S,,," is not surprising. Another 
means of evaluating (1) in terms of Weber and Neumann functions is given in the appendix. 
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Lastly I require the integral representations of the Bessel functions. Only one of many 
equivalent forms is given here: 

(6) 
Note that half-integer-order modified Bessel functions are simply products of elementary 
functions. 

Examples for semi-infinite superconductor geometry 

As a first elementary example, consider a type-I1 superconductor occupying the half-space 
z < 0 and containing a single vortex oriented along the z-direction [l, 10, 111. The 
 maximum value of the vertical component of the magnetic field above the superconductor 
is given by 

e-kz/A 40 dkk H& =o,z > 0) = - 
%A2 l m ( k + - a )  

(7) 

where A is the London penetration depth and 40 is the flux quantum. This integral can be 
evaluated by decomposing the integrand and using (2) and (3). The result for the maximum 
value as a function of separation z is 

A A 
HA0.z > 0) = 2 [Ha (:) - ;HI (:) -No (:) + ; N I  (:) + . (8) 

Here [9] 
n/Z 

&(z) = 1 /” sin(z cos (D) dp 
n o  

is -Eo(z) where EO is the zero-order Weber function, and HI(z) = 2/?r - H(,(z). In 
figure 1 I have plotted (4AZ/&)Hlz(p = 0, z) versus z/A. The maximum value of the 
vertical component of the magnetic field is monotonically decreasing with separation z, 
as expected physically. It is remarkable that the separately oscillating Struve and Bessel 
functions in (8) yield such a decreasing function. In some MFM tip models, such as the 
magnetic point-charge model [l], Hz yields the veaical force FL directly. Therefore (8) 
quantitatively gives the expected size of the force signal due to a single vortex when 
Fz (Y Hz.  

Next consider a magnetic point charge, m, at a distance d above a semi-infinite 
superconductor [I]. The vertical component of the induced magnetic induction is 

Here JO is the zero-order Bessel function and p is the radial coordinate. The force acting 
on the tip is Fz = mzHz = fBpd(p  = 0, z = d). The resulting integral for the force is 
performed by first rationalizing the denominator of the integrand. Then two terms may be 
integrated trivially, giving 
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Figure 1. (a) Linear plot of the maximum value of the vertical component of magnetic field 
(4A2/&)Hi@ = 0.2). above a semi-infinite supenonductor (equation (8)) versus zlh, where h 
is the London penetration depth. (b) Log-log plot of (4A2/&)Hz versus z / k .  

The remaining integral is evaluated by using (1) and (4), and the relations 
1 1 2 
-N’ - - N I  - -Nz 
Z ’- z 22 

The resulting expression for the vertical force is 

The expected scaling dependence of the force is explicitly manifest. In figure 2, Y A ’ F ,  
is plotted versus distance d/A (log-log scale). The curves for A2/4dZ and A2/4(d + 1)’ 
are included for comparison. The function 1/4dz gives a strict upper bound on the force, 
corresponding to complete flux exclusion (A 3 0). 
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Figure 2. Plot of the vertical force on a magnetic point charge (equation (13)). %A2Fz 
versus distance d/A (log-log scale). The c w e s  for A2/4d' and'A2/4(d i- 1)' are included for 
comparison. 

In a similar way the induced magnetic induction itself can be evaluated in closed form. 
Using the definite integral [9] 

gives 

The last term in (15), - ( m / ~ h 2 ) J 6 J O k 2 ~ e - U Y / A J J o ( k p / h ) ,  01 = d + z ,  can be 
evaluated by either expanding Jo or the square root in infinite series. Using the infinite 
series form of JO and (1) gives for this term 

with f i  = a!/h. Otherwise it can be rewritten as 

where the binomial coefficient is 

Similar closed form results can be obtained for the supercument density in the superconductor 
(z  < 0) and for the vector potential and both components of the magnetic field in all space, 
but these are not primary to the present discussion. 

The remaining examples of this section concern a magnetic point dipole located either 
above or within a semi-infinite superconductor [4]. The next section treats a model of an 
extended MFM probe, namely a verticd .. -se&ent of wire. If the point dipole is located a 
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distance a above the superconductor, with angle of inclination 0 with respect to the vertical 
(2) axis, then the magnetostatic interaction energy is [4] 

\ 

o(a) = (1 + cos2 e)- ~ 7 r ~ 3 ~ m ( l + 2 k 2 - 2 k ~ ) k 2 e - a ' 1 i d k  . a > O .  (18) 

This energy has been obtained from 141 U(a) = -;r% . * d ( p  = 0, z = a) where 6 is the 
dipole moment and the factor $ is due to self-interaction. Integrating the first two terms of 
(18) leaves 

1 U@) = (1 + cos2 e)- 'Om' [1+ 6:~- 8 s  lm m k 3 e - " ' l A  dk 
647ra3 

where the integral differs from that in (11) only in the additional power of k. Therefore 
equation (1) gives 

A2 
U@) = (1  COS^^)-- 647ra3 'Om' [ 1 + 62 + Z Z ~ [  A2 (-$ + 1) w, (?) + (?) 
This equation shows that both the interaction energy and vertical force 

(1 + 2k2 - 2 k m ) k 3 e - w a l A  dk ao 'om2 F~ = -- = (1 +COS e)- 
aa 8nA4 1 

can be put into closed form for arbitrary dipole orientation. In figure 3, for 0 = 0, 
(8aA3/pomz)U(a) is plotted versus the normalized height a/A (log-log scale). 

For a vertical dipole located within the semi-infinite superconductor, at a distance a 
from the surface, the magnetostatic interaction energy is given by 141 

\\\ 

'\\ 

"\ \'. 
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where the presence of the radical in the exponent is due to the finite penetration depth. 
From equation (6) it follows that 

and then (22) may be evaluated entirely in terms of modified Bessel functions. The functions 
K3/2 and K5p can be rewritten in terms of elementary functions, giving, with z = a/A, 

This function is also plotted in figure 3. ~. 

On the other hand, when there is a horizontal dipole located within the superconductor, 
the interaction energy is [4] 

The decomposition 

is very useful because it can be recognized that only two additional integrals are introduced 
beyond (22). Of these, one is elementary and the other can be evaluated by using (23) with 
U = f .  After combining like powers of all. and using a recursion relation for 4 ( 2 a / A ) ,  
this leads to 

A ( 3A 1 1 A 2  A3 3A4) Uhor(a) = e-2/* - 1 + -- + - - + 3- + - - 16rrA3 
pom2 a 2 a  4 a2 a3 2a4 

-- 

-.I- a 2 a  [ E K ,  ($) + (1 + g) Kz (31 
In figure 3, -(8irh3/pomz)U(a) is plotted versus the normalized depthalh (log-log scale). 
(In equation (27) K2 could be written in terms of KO and K I . )  

By superposition, the magnetostatic interaction energy may be obtained as [4] 

u(a) = ~,,,(a)cos2e,+ uh,,(a)sin2e (28) 

for arbitrary dipole orientation within the superconductor. Using equation (24) for U,, and 
(27) for uh,,,, I have shown that the interaction energy and associated force may be put into 
closed form for any dipole direction. Furthermore, using (26), I have shown that 

By using the small argument expansion K z ( x )  + 1/2x2 - 1/2 + O(x2) as x + 0, it can 
be shown that 2&, and U,, differ by a term proportional to I /a  as a -+ 0. Similarly, it 
can be shown that both U,,, and vary as I/a as a + 0. 
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Straight wire tip for MFM 

Here a straight-line wire tip of length 1 and magnetized dong the ?-direction is considered. 
The wire is oriented vertically, with the bottom end at a distance of a from the 
superconductor. This provides a very simple model of a spatially extended MFM probe. 
Another reason it is of interest is because it contains both the monopole and dipole results 
as special cases. The self-interaction energy can be written as 

where q is the magnetic moment density per unit length. Then the force can be expressed 
as [41 

a3 47th' 
(1 + 2k' - 2k-)ke-*'lA((l - e-k''A)2dk. (31) 

Previously this integral was approximated and numerically evaluated 141. Using 
equations (l), (4), and (12), the force follows as 

-&[&ffz(-j;-)-Hi k + l  ( y ) - z a + l N z ( ? )  k + l  3h 

+NI (y)] +-[-E& A 3h (7) Z(a + I )  - H I  (-) 
2(a + I )  2(u + I )  

As expected, extreme lengths of the wire provide useful special cases. As 1 -P 0, 
the magnetic dipole l i t  is recovered, equation (21) with 0 = 0. The product lq is 
identified with the magnetic dipole moment m. As 1 -P 00, the magnetic monopole result 
(equation (11)) is recovered. In this limit, the upper magnetic charge does not interact with 
the superconductor. 

Discussion and summary 

This paper examined the magnetostatic energies and forces derived from axisymmetric 
models appropriate for magnetic force microscopy (m) of superconductors. The geometry 
of such models typically has a semi-infinite sample with either an Abrikosov vortex andor 
magnetic point sources. By means of a two-dimensional Fourier transformation, or Hankel 
transformation, these models can be solved. The resulting electromagnetic fields and 
densities and associated energies and forces have previously been left in the form of one- 
dimensional integrals over wavenumber k. This paper shows that these results can be made 
much more explicit. 

Terms which correspond to physically important limits become transparent. An example 
is the limiting situation of complete flux expulsion, A + 0, as in (II), where A is the London 
penetration depth. Even for the well studied Pearl solution 11, IO] new closed form results 
have been obtained. 



Interaction energies and forces in magnetic force microscopy 4209 

This paper shows that several previous uses of numerical integration are unnecessary. 
A key is to use the special function theory of solutions of Bessel's equation, including the 
properties specific to the Bessel, modified Bessel, Neumann, Struve, and Weber functions. 
The use of the Meijer function [9]  G;; has been avoided because a detailed knowledge 
of its transformation properties would be required. Although special functions appear in 
intermediate results, often elementary functions arise in special cases. An example is (6)  
when v is an integer. Another point of view in considering this result is to think in terms 
of incomplete gamma functions [9] y ( u , x )  or r(u, x ) .  

A basic approach of this paper was to exploit differentiation of an integral with respect 
to a parameter, as in (1)-(3) and (14). This was particularly convenient for the integrals 
of interest because of the recursion relations satisfied by solutions of the homogeneous 
or inhomogeneous Bessel equation. For instance, the three-tem recurrence relation for 
the derivatives of the Struve function H ,  involves only these functions. This method has 
manifold additional applications in the solution of vortex and electromagnetic boundary 
value problems which in tum is useful for MFM and levitation modelling. 

The results of this paper can be used in further quantitative MFM studies of 
superconductors to delineate the deviations from the idealizations. For instance, it is usually 
assumed that the probe itself does not disturb the field being imaged. Comparison with the 
results here could show how large the perturbing effect of the probe is. Also important for 
finite size probes could be to take into account demagnetization effects. The models treated 
here have not taken into account hysteretic magnetic forces, which depend on the history 
of the sample. Related to this topic is the need to accommodate for critical state effects of 
a type-I1 superconductor. 

The results of this paper can be extended and applied to a variety of levitation systems 
[5-7]. Consider, for e x q p b ,  the hysteretic force on a small volume V of superconductor 
magnetized parallel to H ,  F = p o V M ( H ) V H ,  where M ( H )  is the magnetization curve. 
For a monopole field, as for (10)-(17), H varies as l/zz for p = 0 and large z. Then 
aH/az - l/z3 along the vertical axis and the vertical levitation force is FL - V M ( H ) H 3 / * .  

A wide class of stratified superconductor boundary value problems can be solved within 
the framework recently developed in 1111. These authors have shown how H: can be used 
as a scalar potential and treated very general vorticities for the mixed state. This theory can 
also be used to model a wide range of magnetic force and levitation systems. 
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Appendix. Reference integral 

Thii appendix presents an altemative for evaluating integrals of the form 

J o  
Rep > 0 

where n is a non-negative integer, such as occur in (l), (ll),  (19). and (21). With the 
change of variable k = sinht, I have 

I , (p)  = Am sinh" t cosh' te-flri*' dt . (U) 
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When n is odd, it is convenient to write the factor sinh" f +sinh"+' t as a sum of hyperbolic 
sines of odd multiples of f .  Then appeal can be made to the integral [9] 

('43) 

where y is an odd integer and Ey is the Weber function of order y. When n is even in 
(AZ), it is useful to write the factor (cosh' f - 1)" cosh' t as a sum of hyperbolic cosines of 
even multiples off .  Then the integral [9] 

x 
sinhyxe-flSi** & = _ _  [ E Y ( B ) + N y ( B ) ]  Rep =-O Im 

~mcoshuxe-B. inhrdr=-- [Ev(~)+Nv(B)]  x Rep > O  
(A4) 2 

where U is an even integer, can be applied. 

functions H,(B) by way of the recursion relation [9]  
Evaluation of the integral In(@) can then be made in terms of lower-order Struve 

for the Weber functions and the relation [12] 

where n > 0 is an integer. The order of the Neumann functions Nu is readily reduced with 
the use of 

(-47) 
2u 

N ~ + I ( z )  = - N ~ - I ( z )  + - N ~ ( z ) .  
Z 

In particular, in evaluating (11) and (19) the following relations are practical: 
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